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In finite difference simulations of eiectrochemical transport problems, it is usually tacitly assumed
that 2, the stability factor Döt/5x2, should be set as high as possible. Here, accuracy contours
are shown in (n7., 2) space, where nT is the number of finite difference steps per unit (dimension-
less) time. Examples are the Cottrell experiment, simple chronopotentiometry and linear sweep
voltammetry (LSV) on a reversible system. The simulation techniques examined include the
standard explicit (point- and box-) methods as well as Runge—Kutta, Crank—Nicolson, hopscotch
and Saul'yev. For the box method, the two-point current approximation appears to be the most
appropriate. A rational algorithm for boundary concentrations with explicit LSV simulations is
discussed. In general, the practice of choosing as high a 2 value when using the explicit techniques,
is confirmed; there are practical limits in all cases.

Some simple electrochemical experiments are simulated here: the Cottrell experiment,
simple chronopotentiometry and linear sweep voltammetry (LSV) on a reversible
system, all with known solutions. This is a rather restricted set and the question
arises, how useful the results will be in genera!. One would like to include, for example,
homogeneous kinetics. This would lead to many more figures and will be left to
future studies.

The diffusion equation,

(1)

is suitably normalised' such that the new time variable T has the range 0 < T I

(except with LSV, see below) and new concentrations C, (species i) are referred to
the bulk concentration of the main species; the new (one-dimensional) space variable
X is commonly given the range 0 X � 6 (except in LSV), corresponding to about 3
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Electrochemical Digital Simulations 21.

Nernst diffusion layer thicknesses. In LSV, noriralisation is such that one sweeps
over a time period T> I and the Nernst layer (dimensionless), /(itT), grows larger
than in the other cases. This will be referred to again below.

There arc three simulation variables: 5T, the time interval (given by the number
of time steps nT); 5X, the space interval; and the stability factor, also called dimen-
sionless diffusion coefficient2 2, defined as

2 = T/(X)2 (2)

Of these three, any two determine the third. For explicit simulation methods, stability
dictates that 2 05; implicit methods such as hopscotch3, Crank—Nicolson4 and
Saul'yev5, are stable for all 2. This does not mean, however, that all 2 values are
practical.

It has mostly been assumed that in a given simulation, 2 should be set as high as
possible, since this either maximises öT (minimises nT) or minimises X, giving
better spatial resolution and thus smaller discretisation errors. For the explicit
techniques, 2 = 04 or 045 is traditionally chosen, while no such tradition exists
fcr the implicit methods. In this paper, simulation accuracy contours in ('T, 2)
(logarithmic) space are examined to attempt to arrive at some general guide lines.
As well, the effect of n, the number of points involved in the current approximation6,
is considered: the dimensionless current G is given as

1
-'

G=— =— (3)0X x= a5X 1=0

with the coefficients a and b tabulated6'1.

Finally, for LSV (and in fact any system where time-varying boundary con-
centrations are found) it is important to use a rational sequence of steps at each
iteration, to be discussed below. The importance of correct ordering of steps was
discussed previously7'1, in the context of homogeneous reactions.

THEORETICAL

In the Cottrell experiment, the boundary concentration of the electroactive species,
C0, is held at zero. At T = 1, then, expression (3) can be compared with the known
exact solution

Ganai = i/.,Jit (T = 1) . (4)

The error displayed in the contour plots is the relative error e,
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(5)
Ganai

For simple chronopotentiometry, if we normalise time by the transition time, the
boundary concentration C0 of the electroactive species should reach zero at T 1
and the constant current G is - ./ir. The error in this case is that in transition time
found, T0, giving

e=T0—1. (6)

For simple LSV, we have the reversible redox couple

A+zeB (7)

(z being the number of electrons transferred) and the time interval by which we
normalise time is the (sweep) time during which one potential unit p,

p = zFE/RT (8)

is swept. Then, the peak current G = 044629 occurs8 at p = —11090 or —2849 mY
(if z = 1). Since peak potential here is the more sensitive quantity (and in many
simulations, a more important result than the peak current), the error is defined as

= Pmax
— (—1.1090)

but expressed, for convenience, in mY in the plots. Initially, all CA = 1, C1 = 0
and at all p, the Nernst equation,

CA,O/CB,O = e" (10)

holds, as well as equality of the flux magnitudes or

GA = —GB

if the diffusion coefficients of A and B are assumed equal. The sweep starts at Po
and op < 0, equal to — 1/liT or —OT. In these investigations, = +8 was used for
accuracy (about 200 mY for a one-electron reaction), so that when the peak is
reached, about 9 p- or T- units have passed. The required X-range is some multiple
of the Nernst layer thickness .J(itT); as mentioned above, at T = I (Cottrell and
chronopotentiometry simulations), 0 X � 6 is sufficient, being about 3 ..J(irT);
since Tin LSV is larger by a factor of 9 or so, an X-range larger by a factor of about 3
should be used in these LSV simulations. This can of course be automated and one
could use an expanding nx as T increases but this was not done here.
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Algorithms

For the Cottrell simulations, the current G is expressed as in Eq. (3). There is a tactical
problem with this method: what should C0 be initially? Mathematically, the boundary
condition is that C0 0 for T> 0 and one has the choice of initialising C0 as zero
or unity (equal to all other C,). In the latter case (as used, for example, by Bard and
Faulkner9), there is no change in any concentrations during the first simulation
step, so one effectively wastes one iteration. Setting C0 initially to zero imparts an
initial finite flux; from the exact solution of the Cottrell experiment, one can calculate
what time.this flux corresponds to (I. Ruzié, Ruder Boskovié Institute, Zagreb, private
comunication 1985). One finds that this comes to about 45T, depending on the choice
of ) and which simulation method one is using. In both cases, it can be argued that one
in fact starts the simulation at a time T 0. Some workers such as Bard and Faulkner9
therefore compensate for this effect by correcting all times by a small amount. In
the present work, we initialise C0 as zero and assign to this state T = 0; at the end
of k iterations, T is assigned the value k5T, without any corrections (method 1).
There is another way of handling this (M. F. Nielsen, unpublished results): if one com-
putes the flux using the next C0 value and present C, (i > 0) values (method 2), then
the fact that — implicitly — a unit C0(T = 0) value is used does not waste an iteration
in the box method, since the change in C, is computed from the flux and the initial C0
is never used. This gives — for a Cottrell simulation — a small difference in the results
compared to method 1, initially setting C0 to zero, letting this drive the first dif-
fusion iteration and computing the flux at the end of that iteration. However,
initially setting C0 1, T = 0 in method I gives the same results, for a Cottrell
simulation, as method 2. In the case of LSV, the two different methods give practically
the same results.

For chronopotentiometry, one needs to devise a rational strategy. At any given
time T, we have a set of known "present" concentrations C (i 1 ... nx, nx being
the number of points in space). Applying the condition of constant G( /ir) and
inverting Eq. (3) then yields C0 corresponding to the present concentration set.
This value C0 then drives the diffusion calculation for the explicit simulation, so that
for the new value C at T' T + öTwe have (point method10)

c = C1 + A(c — 2C, + C2) (12)

and so on for other i. The same thing holds for the Runge—Kutta method RKI (ref.")
for the first half-step, after which a new intermediate C0 value must be used for

11,1

For the transition time, the simulation stops when a C0 value reaches or goes
below zero. Linear interpolation between this and the previous C0 value then de-
termines the exact transition time.
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For the Crank—Nicolson method, there is a problem with derivative boundary
conditions1213, which is overcome by including future C, values in the implicit
discretisation'4. Thus, for the first equation of the system of implicit discrete equa-
tions, we have

c = C1 + pc0 — 2C1 + C2 + C — 2C + C), (13)

where C is as yet unknown and can be so1ed for, if we have another equation in-
volving it. This is furnished by the known current, that is, Eq. (3) at T'

GA = •L (14)
i=O

This technique, here called ICN, has been described for several systems'4.
The stable Saul'yev methcd'5 comes in several variants. Lapidus and Pindcr give

a good description16 of the basic asymmetric LR and RL algorithms which, although
)-stable, are not very accurate. Saul'yev himself'5 and Larkin'7 suggest balancing
the asymmetries with either alternating between LR and RL on successive iterations,
or taking, at each iteration, the average of an LR and an RL sweep. This latter
technique, which we call <LR, RL>, is used here. It shares with Crank—Nicolson the
derivative boundary problem and it can be solved in a similar manner, giving what
we might denote as the I<LR, RL> method, to be described elsewhere'8.

The rational algorithm for LSV goes as follows. At time T, potential p, we have
two sets of known discrete concentrations CA, and C11, (i = I ... fly). The boundary
concentrations CA,O and CB,o are given, for this p value, by a combination of the
Nernst equation (10) and the equal and opposite fluxes condition (11). Substituting
Eq. (3) for GA and GB in Eq. (11) and solving, we obtain

—b(CA, + CB,f)
CAO= ° - (15)

b0(l + e")

CB,O = CA,0e. (16)

The CA,0 value then also yields the present GA (flux) value, and both C0 values drive
the diffusion step to p' = p + 5p. Feldberg2 has used a similar expression, although
he mixes present and future C-values in his flux expressions, using the two-point
discretisation natural to the box method,

GA = (CA,l — C,O)/ÔX, (17)
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but another sequence of steps in each calculation, resulting in (almost) identical
current at each time step. The mixing turns out to have little if any effect. Britz1
has previously described an inconsistent algorithm (for both point- and box methods),
in which CA,o and CA,o appropriate to p', the new p, are first computed and then
used to drive the diffusion. In addition, the current GA is then computed using all
the new C values. This procedure is neither rational nor consistent, and causes grave
convergence problems, especially with respect to peak potential. Britz consequently
found that up to i0 steps per potential unit were required for reasonable accuracy
in peak potential, compared with only about 100 for Crank—Nicolson or, for that
matter (see Results section) the plain explicit methods using the correct algorithm,
if an accuracy of about 01 mY is demanded. This inconsistency was pointed out
to one of the authors (D.B.) by M. F. Nielsen and 0. Hammerich (Copenhagen,
private communication 1988). Thus, the previously called box method1 was not
in fact that method used by the Feldberg school. and previous efficiency calcula-
tions1 11 are incorrect on this point.

Similarly as in chronopotentiometry, implicit Crank—Nicolson or Saul'yev expres-
sions, involving the unknown future C0 and C0 are used for LSV; there are no
special complications.

The peak potentinl is calculated by fitting an exact parabola to the three current
points standing on the peak, and calculating the p value corresponding to the
parabola's maximum. In this way, peak potential resolution is better than the
interval 3p which can be as large as 00l or about 03 mY.

Numerical Experiments

As well as the error, cpu time contours are plotted. In general, one decides on an
acceptable error (for example, lO relative, or 01 mY in LSV were chosen here),
and the most efficient simulation technique is that which yields this error or less in
the shortest possible cpu time.

The error limit of iO relative, or 00l%, might be considered too severe, since
measurement accuracy rarely goes below I %.Previous studies, however, have tended
to show that when comparing simulation methods, the error limit is not critical.
The choice is somewhat arbitrary and our present choice was a matter of convenience,
leading to a convenient range of cpu times for comparison purposes.

Computer programs were written in FORTRAN, using double precision (only
in order to obtain reliable error estimates) and were run on a Digital Equipment
VAX 6210 computer under the VMS operating system.

RESULTS AND DISCUSSION

In the following, the aim was a relative error el i0 for the Cottrell and chrono-
potentiometry simulations, and el 01 mY in peak potential for LSV. The areas
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corresponding to these errors have been shaded in all the figures. The names EX,
BOX and RK2 have been assigned to, respectively, the explicit point-, box- and
second-order Runge—Kutta methods; the names ICN, <LR, RL> and I<LR, RL>
have been defined above.

Cottrell Simulations

Figure 1 shows these, using the point method (EX) for the 2-, 3, and 6-point current
approximations. For n 6, a zero-error contour is seen, that is, the error crosses
zero, at about )L = 006. One might expect such a contour at )L = O16, where the
second-order discretisation error fortuitously goes close to zero' 6 Possibly the
residual errors even with the 6-point current approximation, or the particular bounda-
ry condition acts to shift the zero crossing region.

Given the contours in Fig. 1, what should one choose as operating point, having
decided on the acceptable relative error? Clearly, a high-n current approximation
is desirable, so we look at Fig. ic. One might choose a point on the zero-error line,
such as point X at (log ny, log ,) about (2.4, 1.7); however, the shaded area is very
narrow there and there are uncertainties in the parameters. If one wants a reasonably
wide region of safety, the circled region A might be better or (in log units), roughly
(2.8, — 1.25). One cannot rely, however, on this to be valid if conditions change
slightly: for example if a chemical reaction takes place in solution. One might conclude
that region B is safest, where the cpu time is now about two orders of magnitude
greater than for the other two points, though still at a reasonable 7 s or so. This is
at a i-value of about 04, close to the usual. On the above grounds, the 3- or even
2-point current approximation are not much less efficient. Note also that, as expected,
the error contours become erratic at )L exceeding O45, so this is a practical maximum.

Figure 2 shows the corresponding plots for the box method, for n = 2, 3 and 5
(for n = 5, the b-coefficients are quite large6 so this is the limit). There is a zero
error line for all three and any n appears to be usable with this method. The un-
certainty in ) for this zero-error line confirms our choice of region A, with a cpu time
of about 7 s. The box method, as traditionally used2, has been said' to use an in-
correct discretisation for the change in C,: the Feldberg formula is

= C1 + )(2c — 3C, + C2), (18)

based on fluxes in and out of boxes, whereas Taylor analysis of the same geometry
seen as points, gives'

= c, + (2C0 — 3C, + C2). (19)

The "correct" factor 4/3 has been used in Fig. 3. Region A (for n = 2) is about the
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best but now we use >10 s cpu. This supports the intuitive fluxes-between-boxes
Feldberg approach with the box method.

Figure 4, for the RK2 (that is, second-order RKI) method"1, leaves little doubt
about the choice of region A, with a cpu time of around 1 s. The 2 limit is clearly
a little over 0'4; RKI is not 2-stable for 2 > 05.

Figure 5, for the Crank—Nicolson method, extends to high 2, up to 100. Evidently
there is a practical 2 limit, depending on T but it is also clear that high 2 is not
desirable. If we look for a minimum-cpu point on the i04 error contour, we arrive

FIG. I

Cottrell experiment simulations, using the
explicit point method, with n = 2 (a),

= 3 (b) and n = 6 (c). For this and all
other figures, n is the number of points used
in the flux approximation, Eq. (3); Solid
lines: nonzero contours in (n1., )) space of
the error e as defined for the simulated
system; dotted lines: zero-error contour;
dot-dashed lines: contours of cpu used, in s.
The shaded are a corresponds to el iO
relative, and the circled regions are discussed
n the text.
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at about point A, not far from (flT' A) (100, 3) (as found previously1), where the
required cpu time is only about 0'3 s or so, making CN highly efficient. For this
method, not 2 but oX forms a limit; the edge of the dense contour region on the right
of Fig. 5 leans at the constant-OX slope.

The hopscotch methcd has been promoted3 for electrochemical simulations.
It is stable for all A. Fig. 6, however, makes the point that this does not imply accuracy
at all 2.One could choose operating region A, with the risk that the zero-error contour

FIG. 2

Cottrell experiment simulations, using the
explicit box method, with n 2 (a), n = 3
(b) and n = 5 (c). For other information, see
legend under Fig. I
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might shift under changed conditions; or region B, with a cpu of about 10 s, gaining
nothing over the usual explicit methods and in fact using a similar L

Figure 7 shows the results for the best of the Saul'yev variants, <LR, RL>
(refs17'1 8). As with hopscotch, the unrestricted is of little use although at "normal"
) values, we here lie close to the zero-error line (region A, cpu time 03 s). As with
hopscotch, it is probably safer to move into a broader part of the acceptable error
region, point B, close to ) = 1 and cpu time about 3 s.

40 -4.--——

Fiu. 3
Cottrell experiment simulations, using the
explicit box method, with n = 2(a), n = 3(b)
n 5 (c) and using the "correct" 4/3 factor
as given in Eq. (19). For other information,
see legend under Fig. 1
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Cottrell experiment simulations, using the second-order Runge—Kutta method, with n = 6.
For other information, see legend under Fig. 1

FIG. 5
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Cottrell experiment simulations, using the Crank—Nicolson
information, see legend under Fig. 1
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Fio. 6

31

Cottrell experiment simulations, using the hopscotch method, with n = 6. For other information,
see legend under Fig. 1

00) 1.)

log A

Cottrell experiment simulations, using the Saul'yev variant <LR, RL> (see text), with n= 6.
For other information, see legend under Fig. I
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In summary (Table I), the box- and point-methods are about equally efficient (but
a low-n current approximation must be used with the box method), RK2 and
Saul'yev <LR, RL> are mildly better by about a factor of 3—7, and Crank—Nicolson
is very efficient. Hopscotch shows up poorly here but it must be pointed out that it is
intended3 for two-dimensional simulations, where it may perform better.

Chronopotentiometry

Figure 8 shows error contours in the calculated transition time, for the explicit
point method EX, for two n values (for n = 2, results are very poor and not included).
Our choice of operating point is quite clear here: n = 5 (Fig. 8 b) at region A, with
cpu time of about lOs. The box method plots are shown in Fig. 9 and here, as for
the Cottrell simulations, the "poor" current approximation, n =2, is once again
the best — no others are shown. The chosen operating region A is here a little less
efficient than for the point method but comparable at a cpu use of about 20s.

RK2 (Fig. 10) does better; in region A only 1 s cpu is needed. The Crank—Nicolson
method ICN (that is, with implicit C), Fig. 11, again shows erratic behaviour for
very high 2 but region A seems a reasonable choice and gives 03 s cpu. Again, the oX

TABLE I

Relative efficiencies of some simulation methods, applied to the Cottrell experiment; operating
regions as shown in Figs 1—7

Method Fig. no. Region T ) cpu, s Eli.

Explicit point,
n=6 ic B 4000 04 7 1

Box, n = 2 2a A 4000 04 7 1

Box with 4f3
factor, n = 2 3a A 6 000 04 30 03
RK2, n = 6 4 A 1 200 0-4 1 7

CN, n= 6 5 A 50 3 03 23

Hopscotch, n = 6 6 B 5 000 03 10 07
Saul'yev
<LR,RL>,n=6 7 B 1000 1 3 2-3

Fio. 8

Chronopotentiometry simulations, using the explicit point method, with n = 2 (a) and n = 5 (b).
Forother information, see legend under Fig. 1
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limit, rather than a 2-limit, is seen. The Saul'yev variant I(LR, RL>, also with
implicit C, (Fig. 12) shows a zero-error contour and we choose region A to be safe,
where cpu use is 3 s — although one might opt for region B or even C, at unusually
low 2 values. Table 1! summarises these results and shows again the superiority of
Crank—Nicolson, properly applied. The Saul'yev variant is about as good as RK2,
which however is easier to program.

Linear Sweep Volta mmetry

• Figure 13 shows mV-error contours for an LSV simulation by the explicit point
method (n = 5). Choosing a ±01 mV peak potential error, and avoiding the zero-
error line leads to the choice of region A at 2 O4 and a cpu use of about 3 s. This
operating region stands in sharp contrast with previous claims1, where the incorrect
algorithm was used; Fig. 14 shows this and we note that the ±01 mY error contour
does not appear in the plot, so the cpu use would be >100 s.

The box method (for n = 2 only) is shown in Fig. 15. As for the other experimental
techniques, n = 2 is optimum and region A gives a cpu use of less than 1 s, in contrast
with previous findings1'11. This is the same operating point as chosen for the point
method; the cpu difference must be due to the difference n current approximations.
Normally, the choice of n has very little effect on Cpu but at small nr as used here (100)
and thus small n1, the high-n calculation begins to take an appreciable cpu time.

Figures 16 and 17 show the results for RK2 and ICN, respectively; RK2 shows
a very narrow ±01 mY region over the 2 0.4 line, and >100 s cpu use if we wish
to stay away from this narrow area (region A). If we were to choose this narrow region,
however, cpu times as low as 02 s are possible (region B); such an operating point
was fortuitously chosen in a previous work'1. For ICN, region A at 2 1 appears
a safe choice and gives a cpu use of 1 s. It would be possible to go to nT < 10 but, re-

TABLE II

Relative efficiencies of some simulation methods, applied to chronopotentiometry; operating
regions as shown in Figs 8—12 (n = 5 or 6 assumed unless otherwise stated)

Method Fig. no. Region T . CPU, S Eff.

Point 8b A 5 000 04 10 1

• Box, n= 2 9a A 6000 04 20 0'5
RK2 10 A 1600 04 3 3

ICN 11 A 100 10 03 30
Saul'yev 12 A 1000 1 3 3

I<LR,RL> B 2000 0l 3 3
C 1000 01 1 10

Collection Czechoslovak Chem. Commun. (Vol. 56) (1991)
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FIG. 11

Chronopotentiometry simulations, using the Crank—Nicolson method with implicit C6 (ICN),
with n = 6. For other information, see legend under Fig. 1

FIG. 12

Chronopotentiometry simulations, using the Saul'yev variant
with n 6. For other information, see legend under Fig. 1
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FIG. 13

37

LSV simulations, using the explicit point method with n =
under Fig. I

5. For other information, see legend
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LSV simulations, using the explicit point method with n 5, but with
inconsistent algorithm. For other information, see legend under Fig. 1.
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Fio. 15

LSV simulation, using the

under Fig. 1
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Fio. 16
LSVsimulation, using the second-order Runge—Kutta method with n = 5. Forother information,
see legend under Fig. 1
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garding the —OO3 mY contour, this would likely lead to much the same cpu use. In any
case, it might be difficult to convince a practising simulator to use such large öT
(or öp) values.

Table III summarises the LSV findings. The ICN result is not surprising but the
poor performance of RK2, and the high efficiency of the box method, might be
unexpected.

TABLE III

Relative efficiencies of some simulation methods, applied to simple reversible
regions as shown in Figs 13— 17 (n = 5 or 6 assumed unless otherwise stated)

FIG. 17

•

/,/,// /

/
/

/ / /

• / .. ///
10 __ //. 1

1.0 —0.50 000 0.50 10 1.5

tog )a

LSV simulations, using the Crank—Nicolson method, with implicit Cj (ICN), and n= 5. For
other information, see legend under Fig. 1
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LSV; operating

Method Fig. no. Region T 2 cpu, s Eff.

Point 13 A 100 0-4 3 1

Box, n= 2 iSa A 100 04 - 1 3
RK2 16 A? 1000 O4 >100 <003
ICN 17 A 10 1 1 3

logn
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CONCLUSIONS

If one can trust that the results outlined are fairly general, we might conclude that
in all cases, the Crank—Nicolson method is more efficient than the explicit point
method by a factor of about 20— 30, at 2-values of 1—10, and given that — for
derivative boundary conditions — the C values are included in the implicit dis-
cretisations. A surprising finding is that the standard Feldberg (box-) method works
best with the "poor" flux approximation n = 2 and then works at an efficiency
about equal to that of the point method, except in the case of simple LSV, where it
matches the Crank—Nicolson method. This must be regarded as a fortuitous result.

The Runge—Kutta integration method11 is either moderately efficient or, in the
case of LSV, rather inefficient, unless one chooses a very narrow operating region.
This was inadvertently done in previous work11, where the efficiency of RK2 in LSV
appeared to be very high.

For these one-dimensional simulations, hopscotch shows no advantages and the
best Saul'yev variant, <LR, RL>, is seen to be mildly more efficient than the explicit
point method. Both hopscotch and Saul'yev, however, are expected to be strong
contenders for two-dimensional simulations, where no exhaustive comparisons have
been made to our knowledge.

The question of what 2 value to choose can be answered fairly rationally. We must
ignore the tempting zero-error contour lines and we are then left with the result
that for the explicit methods EX, BOX and RKI, a 2-range 03 —04, as traditionally
used, is about ideal. For Crank—Nicolson, somewhat higher 2 values are optimal,
2 = 3 being about an ideal all-round point. The upper limit depends on 5T but in
general, for practical 5T (or flT) values, 2 = 30 or so should not be exceeded.

Lastly, a rational algorithm is essential for simulations with time-dependent
boundary concentrations; small inconsistencies in the algorithm can lead to very
slow convergence indeed.

The authors gratefully acknowledge discussions with Dr Ole østerby, of the Computer Science
Department, Aarhus University.
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